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Abstract

Part-based models have demonstrated their merit in ob-

ject detection. However, there is a key issue to be solved

on how to integrate the inaccurate scores of part detectors

when there are occlusions or large deformations. To han-

dle the imperfectness of part detectors, this paper presents a

probabilistic pedestrian detection framework. In this frame-

work, a deformable part-based model is used to obtain the

scores of part detectors and the visibilities of parts are mod-

eled as hidden variables. Unlike previous occlusion han-

dling approaches that assume independence among visibil-

ity probabilities of parts or manually define rules for the

visibility relationship, a discriminative deep model is used

in this paper for learning the visibility relationship among

overlapping parts at multiple layers. Experimental results

on three public datasets (Caltech, ETH and Daimler) and

a new CUHK occlusion dataset1 specially designed for the

evaluation of occlusion handling approaches show the ef-

fectiveness of the proposed approach.

1. Introduction

Object detection is a fundamental problem in computer

vision with wide applications such as surveillance, image

retrieval, robotics and intelligent vehicles. Since pedestrian

detection is one of the most important topics in object de-

tection, it has attracted much attention in recent years.

Many classification approaches, features and deforma-

tion models have been used for achieving the progress on

object detection. The classification approaches widely used

include various boosting classifiers [7, 32], linear SVM [5],

histogram intersection kernel SVM [20], latent SVM [12],

multiple kernel SVM [26] and structural SVM [34]. The

investigation on features includes Haar-like features, his-

togram of gradients (HOG), integral histogram, color his-

togram, gradient histogram, covariance descriptor, local bi-

nary pattern, features learned from deep model, depth, seg-

mentation and motion [1, 5, 7, 10, 19, 22, 25, 27, 29, 28].

1
http://www.ee.cuhk.edu.hk/˜xgwang/CUHK_pedestrian.html
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Figure 1. Estimating the visibility of a part from its detection score

or from its correlated parts. Rectangles with dashed line denote

wrong estimation, rectangles with solid line denote correct esti-

mation. Parts estimated as not visible are represented by black

rectangles. Single part detection score gives wrong visibility es-

timation. With the help of visibility correlation among parts, our

approach can find the correct estimation successfully.

Recent deformable models for object detection mainly

model the translational deformation of parts [12, 21, 34].

Generic detectors [5, 29, 12, 34, 22] assume that pedes-

trians are fully visible, and their performance degrades

when pedestrians are partially occluded. For example,

many part-based deformable models [12, 34] summed the

scores of part detectors. A pedestrian-existing input win-

dow is considered as having high summed score. If one part

is occluded, the score of its part detector could be very low

and consequently the summed score will also be low. How-

ever, occlusions occur frequently, especially in crowded

scenes. As pointed out in [10], the key to successful de-

tection of partially occluded pedestrians is to utilize addi-

tional information about which body parts are occluded. For

example, the additional information used in [10] was from

motions, depth and segmentation results. In this paper, it is

only inferred from the appearance of single images through

exploring the strong correlations among the visibilities of

different parts with multiple sizes. Once the occluded parts

are identified, their effect should be properly removed from

the final combined score.

Most previous approaches [4, 10, 29, 32] rely on the de-

tection score of a part for estimating its visibility. However,

part detectors are imperfect and such estimation is inaccu-
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rate. Take the pedestrian in Fig. 1 as an example. Although

the part of left-head-shoulder is visible, its part detection

score is relatively low because its visual cue in the image

does not fit the part detector well. Although the part of left-

leg is invisible, its part detector finds a meaningless false-

positive window on the baby carriage with a relatively high

detection score. If the detection scores of parts are directly

used for estimating visibility, the pedestrian will be wrongly

estimated as having left-head-shoulder invisible and left-leg

visible.

This paper is motivated by the fact that it is more reli-

able to design overlapping parts at multiple layers and ver-

ify the visibility of a part for multiple times at different

layers. The detection score of one part provides valuable

contextual information for the estimation on its overlapping

parts. Take the pedestrian in Fig. 1 as an example. The

left-head-shoulder and head-shoulder are overlapping parts

at different layers. Similarly for the left-leg and the two-

legs. The part of head-shoulder has a high detection score

because its visual cue in the image fits the corresponding

part detector well. And the part of two-legs has a low de-

tection score because it does not find any visual cue to fit

the detector. If the correlation among parts is modeled in

a correct way, the detection score of the head-shoulder can

be used to recommend the left-head-shoulder as visible and

that of the two-legs can be used to recommend the left-leg as

invisible. Therefore, the major challenges are how to model

the relationship of the visibilities of different parts and how

to properly combine the results of part detectors according

to the estimation of part visibility.

There are two contributions of this paper.

1. A probabilistic framework for pedestrian detection

which models the visibility of parts as hidden variables. It is

shown that various heuristic occlusion handling approaches

(such as linear combination and hard-thresholding) are con-

sidered as its special cases but did not fully explore its

power in modeling the correlations of different parts.

2. A discriminative deep model to learn the correlations

of different parts, which is inspired by the great success of

deep models [2, 15, 18] in various applications of dimen-

sion reduction [16] and recognition [15, 17, 18, 24]. The

new model has some attractive features. First, the hierar-

chical structure of our deep model well matches with the

multi-layers of the parts model. Different from the Deep

Belief Networks (DBN) in [15, 16], whose hidden variables

had no semantic meaning, our model consider each hidden

variable as representing the visibility of a part. By includ-

ing multiple layers, our deep model achieves a better vari-

ational lower bound on the training data, and in the mean-

while, achieves more reliable visibility estimation. Second,

it well models the complex probabilistic connections across

layers with good efficiency on both learning and inference.

Third, our discriminative deep model only uses the scores

of part detectors as input without requiring any occlusion

information for supervision at the training stage.

Finally, although the above discussions focus on occlu-

sions, the proposed framework is also effective to handle

abnormal deformations to some extent. If some parts are

abnormally deformed and cannot be detected by part detec-

tors, they can be treated as occlusions and removed from the

integration of parts.

2. Related Work

Deformation and occlusion are two major problems to

be solved in object detection. To handle the deformation

problem, deformable part-based models have been widely

used [12, 21, 34]. In these models, the appearance of each

part and the deformation among parts were considered for

detection. For example, the state-of-the-art approach in

[12] combined both the appearance score and the transla-

tional deformation score. To model the deformation, the

star model was used in [12], the tree model was used in

[21, 34] and a loopy graph model was used in [30]. Detec-

tors using boosting to select features from a large pool of

local candidate features also consider objects as being com-

posed of parts [6, 7, 25].

Since visibility estimation plays a key role for detectors

in handling occlusions, various approaches [4, 9, 10, 19,

29, 32, 33] were proposed to estimate the visibility of parts.

Most existing approaches [4, 10, 19, 29, 32, 33] assumed

that the visibility of a part is independent of other parts and

estimated the visibility by hard-thresholding the detection

scores of parts. Recently, Duan et al. [9] used manually

defined rules to describe the relationship between the visi-

bility of a part and its overlapping larger parts and smaller

parts, e.g. if the head or the torso are invisible, its larger

part of upper-body should also be invisible. In their ap-

proach, the binary visibility status of a part is obtained by

hard-thresholding its detection score. Then rules are used

to determine whether the combination of the binary visibil-

ity status of different parts is correct. If yes, the current

window is detected as positive; otherwise, negative. This

approach has certain drawbacks. First, hard-thresholding

does not distinguish partial occlusions from full occlusions.

A probabilistic model would be a more reasonable way to

describe occlusions. Second, a larger part that is misclas-

sified as being occluded by hard-thresholding its detection

score cannot be corrected by the rules. Third, the rules were

defined manually but not learned from training data. The

relationship among the visibilities of parts systematically

learned from training data may open the door to more robust

methods with a wider spectrum of applications. Consider-

ing the problems faced by the approaches discussed above,

we propose to use a discriminative deep model to automat-

ically learn the probabilistic dependency of the visibilities

of different parts.

3259



1

Part based 

detection

2

Visibility

probability

estimation

3

Detection 

score

integration...

Detection 

scores s

...

Visibility probability p(h|s)
image Detection label y

1. obtain the detection scores s by part detector;

2. use the s to estimate visibility probability p(h|s);
3. combine the detection scores with the visibility proba-

bility to estimate the probability of an input window be-

ing pedestrian p(y|s), c.f. (3).
Figure 2. Framework overview.

3. A Framework for Pedestrian Detection with

Hidden Occlusion Variables

Denote the label of the current detection window by

y. Denote the detection scores of the P parts by s =
[s1, . . . , sP ]

T. In this paper, it is assumed that part-based

models have integrated both the appearance scores and the

deformation scores into s. Denote the visibility of the P
parts by h = [h1, . . . , hP ]

T ∈ {0, 1}P , with hi = 1 mean-

ing visible and hi = 0 meaning invisible. The overview of

the framework is shown in Fig. 2.

Since h is not provided at the training or testing stages,

it is a hidden random vector. p(y|s) can be obtained by

marginalizing out hidden variables h:

p(y|s) =
∑

h

p(y,h|s) =
∑

h

p(y|h, s)p(h|s). (1)

It can be implemented by setting p(y|h, s) = e
∑

i
yhisi :

p(y|s) =
∑

h

e
∑

i
ysihip(h|s). (2)

The computational complexity of (2) is exponential to the

dimension of h. A faster and approximate solution to the

above is as follows:

p(y|s) ≈ e
∑

i
ysih̃i/Z. (3)

Z = 1 + e
∑

i
sih̃i is the partition function to have

∑

y(e
∑

i
ysih̃i/Z) = 1. h̃i is sampled from p(hi|h\hi, s),

or alternatively calculated by a mean-field approximation,

in which instead of the average over all h configurations

according to p(h|s) in (2) one replaces h by its average

configuration h̃ = E[h|s]. The mean-field approximation

is also used in [14, 15, 16] for computing the posterior of

RBM and DBN. More details are provided in [2]. Different

approaches have different implementations of the h̃i in (3).

h̃i is call the visibility term.

Many deformable part-based models [12, 23, 34] directly

sum up part-based detection scores. They can be considered

as setting h̃i = 1 in (3) and have

p(y = 1|s) ≈ exp(
∑

i

si)/Z ∝
∑

i

si. (4)

After obtaining s from the part-based model, many oc-

clusion handling methods calculate the p(y|s) by weighted

sum of detection scores. These approaches obtain the h̃i in

(3) from thresholding detection scores [29, 33], from linear

SVM in [10] when only intensity information is available or

from other cues like depth and motion [10]. With deforma-

tion among parts and multiple cues already integrated into

si, these approaches assume that the h̃i in (3) is dependent

on si, i.e. h̃i = f(si), where f is the mapping of si to h̃i.

In summary, many approaches are special cases of the

framework in (3) by setting h̃i = 1 or by considering the

visibility term h̃i as depending on si. The power of this

framework in considering the visibility relationship among

parts is not explored. In this paper, we explore this power

and construct a deep model that learns the visibility rela-

tionship among parts. In our model, h̃i = p(hi|h\hi, s) 6=
p(hi|si) and p(hi|h\hi, s) is learned from a deep model

that will be introduced in the next section [15].

4. The Discriminative Deep Model for Part Vis-

ibility Estimation

4.1. The Restricted Boltzmann Machine (RBM)

Since RBM is a building block of our deep model in-

troduced in the next section, a brief introduction on RBM

is provided. Denote the binary visible variables by vector

x = [x1, x2, . . . , xN ]T. Denote the binary hidden variables

by h. The RBM defines a probability distribution over h

and x as

p(x,h) ∝ e[x
TWh+cTh+bTx]. (5)

x forms the visible layer and h forms the hidden layer.

There are symmetric connections W between the visible

layer and the hidden layer, but no connection for variables

within the same layer. The graphical model of RBM is

shown in Fig. 3(a). This particular configuration makes

it easy to compute the conditional probability distributions:

p(xn = 1|h) = σ(wn,∗h+ bn),

p(hi = 1|x) = σ(xTw∗,i + ci),
(6)

where wn,∗ is the nth row of W, w∗,i is the ith column of

W and σ(t) = (1 + exp(−t))−1 is the logistic function.

The contrastive divergence in [14] is used for learning the

parameters W, c and b in (5).
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Figure 3. (a) RBM, (b) our deep model and (c) DBN.

4.2. The Deep Model for Visibility Estimation

Parts model. Our parts model consists of 3 layers that

have different sizes of parts as shown in Fig. 4. Parts at

the bottom layer have the smallest size, and those at the top

layer have the largest. A part at upper layer is composed of

its children in the lower layer. The top layer is the possi-

ble occlusion statuses. Gray color indicates occlusion. The

other two layers are body parts. An occlusion status is ob-

tained by combining one or several parts in the middle layer.

The leftmost part, i.e. head-shoulder, appears twice (repre-

senting occlusion status at the top layer and part in the mid-

dle layer respectively) in this figure because this part itself

can generate an occlusion status.

Deep model. The graphical model of the proposed deep

model is shown in Fig. 3(b). Detailed information is shown

in Fig. 4. Denote the visibility of Pl parts in layer l by

hl = [hl
1 . . . hl

Pl
]T. There are connections for variables

between adjacent layers and no connections for variables

within the same layer. A part can have multiple parents and

multiple children. In this way, the visibility of one part is

correlated with the visibility of other parts at the same layer

through shared parents. Given s, the probability distribution

of h1, . . . ,hL is as follows:

p(h1, . . . ,hL|s) =

(

L−2
∏

l=1

p(hl|hl+1, s)

)

p(hL−1,hL|s),

p(hl
i|h

l+1, s) = σ(wl
i,∗h

l+1 + glis
l
i + cli),

p(hL−1,hL|s)

= e

[

hL−1T
WL−1hL

+cL−1T
hL−1

+cL
T
hL

+gL−1T
sL−1

+gLT
sL

]

.

(7)

For the model in Fig. 4, we have L = 3. Wl, gli and cl are

the parameters to be learned. Wl models the correlation

between hl and hl+1, wl
i,∗ is the ith row of Wl, gli bal-

ances the weights between the detection score sli and cor-

relation with other parts, and cl is the bias term. Since the

detection scores s are obtained from the part-based model

at both the training and the testing stages, we consider them

as the observed input variables and need not model p(s).
And this model can be considered as a conditional random

field (CRF). Note that, given s, hl
i and hl

j are not inde-

pendent, i.e. p(hl
i, h

l
j |s) 6= p(hl

i|s)p(h
l
j |s), although they

are independent given hl+1 and s, i.e. p(hl
i, h

l
j |h

l+1, s) =

1
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Figure 4. The parts model used. sil is detection score of each part,

h
l

i is the visibility of ith part in the lth layer. For example, h1

1

indicates the visibility of the left-head-shoulder part.

p(hl
i|h

l+1, s)p(hl
j |h

l+1, s). In this way, the correlation

among parts at the same layer is also modeled.

Since the proposed model is a loopy graphical model,

it is normally time consuming and hard to train. Hinton

et al. [15, 16] proposed a fast learning algorithm for deep

belief net (DBN) which has shown its success in many ap-

plications. In this work, we adopt a similar learning algo-

rithm to train our model. DBN is a generative model and

does not have semantic meanings for the hidden variables.

Our model is a conditional model and has semantic mean-

ing for each hidden variable. Because of these differences,

the DBN algorithm cannot be directly used for our model.

We modified the training and inference algorithms in [15]

when we apply them for our model.

The training algorithm is to learn the visibility correla-

tion Wl, detection score weight gl and bias cl in (7), with

two stages.

1. Stage 1: For l=1 to 2 { Train parameters for layer l and

l + 1 using RBM. }

2. Stage 2: Fine-tune all the parameters by backpropagat-

ing error derivatives.

At Stage 1, the parameters are trained layer by layer and

two adjacent layers are considered as an RBM that has the

following distributions:

p(hl
i|h

l+1, s) = σ(wl
i,∗h

l+1 + cli + glis
l
i),

p(hl+1

j |hl, s) = σ(hlTwl
∗,j + cl+1

j + gl+1

j sl+1

j ).
(8)

The contrastive divergence in [14] is used for fast learning

of the parameters in (8). In the appendix, we prove that this

layer-wise training algorithm is optimizing a lower bound

of the likelihood function. At Stage 2, the variables are ar-

ranged as a backpropagation (BP) network as shown in Fig.

5 for fine tuning all parameters.

The inference stage is to infer the label y from detection

scores s. At the inference stage, we use the framework in
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(3) for obtaining p(y|s). And the part visibility probability

h̃l+1

i in (3) is obtained using the BP network in Fig. 5, i.e.

h̃l+1

i = p(hl+1

i |h\hl+1

i , s) = p(hl+1

i |hl, s)

= σ(hlTwl
∗,j + cl+1

j + gl+1

j sl+1

j ).
(9)

In order to reduce bias of training data and regularize

the training process, we enforce that the visibility correla-

tion parameter W to be non-negative. Therefore, our train-

ing process have used the the prior knowledge that negative

correlation among visibility of parts is unreasonable. Fur-

thermore, the element wl
i,j of Wl in (7) is set to zero if

there is no connection between units hl
i and hl+1

j in Fig.

4. In this way, we keep the most important edges based on

our knowledge. There are other ways for modeling the con-

nection among parts, e.g. the full-connected part models

[3]. They could be helpful for finding more connections but

will increase model complexity, reduce efficiency and need

more training samples. They are not DBN, need more com-

plex inference/learning algorithms, and may need pruning

edges in training.

5. Experimental Results

The proposed framework is evaluated on four datasets:

Caltech [8], ETHZ [11] and Daimler [10] datasets are pub-

licly available; the CUHK occlusion dataset is constructed

by us. The INRIA training dataset in [5] is used to train our

approach. Occlusion information is not required for train-

ing. Once the model is learned from this training set, it is

fixed and tested on the four datasets mentioned above.

In the experiment, we use the modified HOG in [12] as

the feature for detection. In our implementation, the de-

formable part-based model in [12] is used for modeling the

deformation among the 20 parts in Fig. 4. The parts are ar-

ranged in the star-model with the full body part being the

root. Since the detection scores obtained from our parts

model are considered as the input of our deep model, the

deep model keeps unchanged if other deformable part-based

models are used.

The approaches to be compared and our approach use

the same features. They are also trained from the INRIA

dataset. The evaluation criteria proposed in [8] is used. The

labels and evaluation code provided by Dollár et al. online
2 is used for evaluating the Caltech dataset and the ETHZ

2Available on www.vision.caltech.edu/Image Datasets

Table 1. The composition of the dataset.

Dataset Images Dataset Images

Caltech train [8] 105 INRIA test [5] 70

TUD-Brussels [31] 110 ETHZ [11] 211

Caviar [13] 355 Our 212

dataset. As in [8], log-average miss rate is used to summa-

rize the detector performance, computed by averaging miss

rate at nine FPPI rates evenly spaced in log-space in the

range from 10−2 to 100.

5.1. Experimental Results on the CUHK Occlusion
Dataset

Most existing datasets are not specifically designed for

evaluating occlusion handling. For example, in the Caltech

dataset, only 105 out of 4250 images for evaluation have

occluded pedestrians. If such datasets are used for evalu-

ation, it is not clear how much improvement comes from

occlusion handling or other factors. In order to specifically

compare pedestrian detection algorithms under occlusions,

we construct the CUHK occlusion dataset that mainly in-

clude occluded images. This dataset contains 1063 images

from the datasets of Caltech, ETHZ, TUD-Brussels, INRIA,

Caviar and our recorded images from surveillance cameras.

The composition of the dataset is shown in Table 1. Images

are strictly selected according to the following criteria.

1. Each image contains at least one occluded pedestrian.

2. Datasets Caviar and ETHZ are video sequences with

high frame rate, e.g. 25 frames per second for Caviar. In

these datasets, the current frame may be very similar to the

next frame. In our dataset, the frame rate is reduced to en-

sure variation among selected images.

3. The image shall not contain sitting humans, since it is

potentially controversial whether they should be detected as

pedestrian or not.

Each pedestrian is labeled with a bounding box and a tag

indicating whether the pedestrian is occluded or not. Since

a lot of occluded pedestrians in datasets like INRIA, ETHZ

and TUB-Brussels are not considered positive testing sam-

ples, the occluded pedestrians are relabeled in our dataset.

Occluded pedestrians have been labeled in Caltech dataset,

their labels are unchanged in our dataset.

We evaluate the performance of our approach on oc-

cluded pedestrians and unoccluded pedestrians separately

and compare with two part-based models proposed by Zhu

et al. [34] and LatSVM-V2 in [12] in Fig. 7. Our ap-

proach has similar performance with [34] and [12] on un-

occluded pedestrians and achieved 5% improvement on oc-

cluded pedestrians. To investigate the effectiveness of using

the deep model to estimate the visibility of parts, we also

test our part model that directly sums up detection score

using (4) and exclude the deep model. It has comparable

performance as [34] and [12] on occluded pedestrians.

/CaltechPedestrians/
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Figure 6. Selected detection results using our framework on the

constructed dataset. The sources of images are given.

In order to investigate various schemes for integrating

the part detection scores, we conduct another set of exper-

iments in Fig. 7(c)-(f). They all use our parts model and

therefore have the same detection scores as input. Our-

P in Fig. 7 is the weighted mean of part scores and the

weights are trained by linear SVM. Fig. 7(c) and (d)

show the results of estimating the visibility by threshold-

ing the detection scores, i.e. part score si is ignored if

si < Ti. Using the same Ti for all the parts is not op-

timal. Therefore, we assume that different parts have dif-

ferent threshold Ti and obtain Ti from training data. For

each part, Ti is chosen such that certain percentage ǫ(=
0.1%, 1%, 5%, 10%, 20%, 40%, 50%) of parts on the pos-

itive training samples are considered as occlusions. The ap-

proach in [9] defines rule for estimating visibility of parts

and integrating detection scores. We use the same rules pro-

posed in [9] to integrate our part scores. As shown in Fig. 7

(c) and (d), the rule based integration does not work well on

our parts model although it has reported satisfactory results

on the parts model in [9]. This may be due to the fact that

we use different features and different parts model from [9].

We cannot exactly obtain the results in [9] on our dataset be-

cause its implemenation is not available. The DBN in Fig. 7

arranges all part detection scores as the bottom visible layer

and 3 layers of hidden units on top of the visible layer as

shown in Fig. 3(c). The approach in [15] is then used for

training parameters and classifying whether an input win-

dow is a pedestrian or not. Fig. 7(e) and (f) show the results

of taking k = 1, 2, 4, 8, 10, 15, 18 maximum part scores for

computing the weighted mean. The experimental results

show that all the schemes discussed above perform worse

than our deep model (represented by Ours −D).
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Figure 9. Experimental results on ETHZ.

Since our deep model has only 20 hidden variables in all

for 3 layers, training and inference time for the deep model

is much less than that for the parts model.

5.2. Experimental Results on Caltech

Since most other relevant publications [28, 1] test on

Caltech training dataset and use other datasets as train-

ing datasets, we choose the Caltech training dataset as our

testing set and the INRIA training dataset as our training

set to be consistent with them. In Fig. 8, we compare

with HOG+SVM and LatSVM-V2, whose results were pub-

lished in [8], under varying levels of occlusion. Compared

with LatSVM-V2, our approach has 8%, 9% and 3% log-

average miss rate improvement for pedestrians with no oc-

clusions, partial occlusions and heavy occlusions respec-

tively. Compared with the 14 state-of-the-art approaches

evaluated in [8] (excluding those using motions), our ap-

proach ranks as the third, the second and the first for pedes-

trians with no occlusions, partial occlusions and heavy oc-

clusions respectively. The two approaches [28, 7], which

performed better than ours in the cases of no occlusions and

partial occlusions, both used a large number of extra fea-

tures such as color self-similarity, local sums, histograms,

Haar features and their various generalizations beside HOG.

Only HOG+SVM, LatSVM-V2 and our approach used the

same features. With more features being included, the per-

formance of our approach can be further improved.

5.3. Experimental Results on ETHZ

The experimental results on the ETHZ testing sequences

are shown in Fig. 9. It is reported in [8] that LatSvm-V2

has the best performance among the 14 state-of-the-art ap-

proaches evaluated on the ETHZ dataset. It can be seen that

our approach has 4% improvement over LatSVM-V2. The

ETHZ dataset consists of 3 testing video sequences. Ta-

ble 2 shows the miss rates at 1 FPPI for the 3 sequences.

The results of ISF are obtained from [9]. The results of

HOG+SVM and LatSvm-V2 are obtained from [8] using

the results and code provided online by Dollár et al.

5.4. Experimental Results on Daimler Occluded
Pedestrian Dataset

The experimental results on the Daimler benchmark test-

ing data in [10] are shown in Fig. 10. Since the dataset is
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Figure 7. Experimental comparisons of different part-based models ((a)-(b)) and different schemes of integrating part detection scores ((c)

- (f)) on our dataset for pedestrians without occlusions (upper row) and with occlusions (bottom row). Zhu denotes results using the parts

model proposed by Zhu et al. in [34]. Ours-P denotes results of using our parts model in Fig. 4 and directly summing up detection score

however without the deep model. In this case, it is equivalent to computing the weighted mean of part scores. Ours-D denotes the results of

using our parts model and the discriminative deep model introduced in Section 4.2. DBN denotes the results of replacing our deep model

by DBN. Rule denotes results of using the rule in [9] for integrating our part scores. T(ǫ=ǫ0) denotes the results the estimating visibility by

hard-thresholding. Ti is learned from the training data such that ǫ0 percentage of parts in the positive training samples are considered as

occlusions. Max k denotes taking the k maximum part scores for computing the weighted mean.
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Figure 8. Experimental results on Caltech for pedestrians under no occlusions (left), partial occlusions (center) and heavy occlusions

(right). The ratio of occluded area is larger than 0.65 for partial occlusions and [0.2 0.65] for heavy occlusions. The log-average miss rate

of our model is 61% for no occlusions and 80% for partial occlusions.

Table 2. Miss rate at 1 FPPI for different approaches. Seq 1 has

999 frames, Seq 2 has 450 frames and Seq 3 has 354 frames.

Seq 1 Seq 2 Seq 3

ISF [9] 47% 38% 52%

HOG+SVM [5] 34% 44% 44%

LatSvm-V2 [12] 30% 34% 32%

Ours 24% 33% 29%

used for occluded pedestrian classification instead of detec-

tion, false positive versus detection rate is used for eval-

uation. Since our focus is on detection for single im-

ages, we only use the image intensity for all evaluated al-

gorithms. Compared with LatSVM-V2, our approach has

similar performance on unoccluded pedestrian, and our ap-

proach achieves about 20% detection rate improvement for

occluded pedestrian. LatSVM-V2, HOG+SVM and our ap-

proach in Fig. 10 are trained on INRIA for consistency with

previous experimental results. Since all results in [10] are

trained on the Daimler training data and have different im-

plementation of HOG feature from ours, we did not show

the results in [10]. For example, the HOG+SVM trained

on INRIA using the code in [12] have quite different result

from the HOG+SVM trained on Daimler training data re-

ported in [10].

6. Conclusion

This paper describes a probabilistic framework for

pedestrian detection with occlusion handling. It effectively

estimates the visibility of parts at multiple layers and learns

their relationship with the proposed discriminative deep

model. Since it takes the detection scores of parts as input,
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Figure 10. Experimental results on Daimler occlusion dataset.

it is very flexible to incorporate with new features and other

deformable part-based models. Through extensive exper-

imental comparison on multiple datasets, various schemes

of integrating part detectors are investigated. Our approach

outperforms the state-of-the-arts especially on pedestrian

data with occlusions.
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